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1 - INTRODUCTION

In bonded structures adhesives are intended to carry shear loads and hence most test specimen
geometries have been designed and oriented towards the determination of shear properties which
could be used in the design of joints. However, many test specimens such as the single lap or thick
adherend have complex stress distributions in the adhesive layer and failures are often related to peel
stresses and the high stress concentration at the bond terminations [1]. Other specimens such as the
losipescu or the Arcan do have nearly uniform pure shear in the adhesive layer. However, their
shapes are complex and, therefore, do not lend themselves to routine testing. Hence, the ideal test
for adhesives should be one which eliminates the drawbacks mentioned above and the cantilever
beam to be discussed herein seems to be a reasonable approach.

Recently, Brinson and collaborators [2-5] have suggested the need of better test specimen ge-
ometries especially for durability predictions. The cantilever beam shear test specimen (BMC) is
suggested as a better means of obtaining shear properties and is made by bonding together two thin
plates. When concentrated and equal loads act on the free end of each adherend (fig.1), the state
of stress is pure shear in the adhesive lay<:.

In order to emphasize the reason for the interest of the so-called BMC specimen, three

cantilever beams subjected to a total load P are presented in fig.2. The three beams are all the same
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Figure 1. BMC test specimen.
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length and thickness to permit a comparison of the deflections. The bonded beam deflects more

than the monolithic beam 2h and less than the third (fig.3) when there is no adhesive.
In the case of the monolithic beam shown in fig.2, which could be thought of as a case of
perfect adhesion, the maximum deflection at the beam tip equals,

61='2i (1)

Ebh?
and the shear stress given by strength of materials is :

3p
= 4bh @

T

Assuming a linear elastic material, the shear strain is as follows :

T
Y=7 3
or,
3p
"= 2Goh Q)

For the third case when there is no adhesion, the maximum deflection is,

- leps

EbR® 4

63

Examining case three more closely reveals that the displacement of points A and point B on
the top and bottom beams as shown in fig.4 are,

P ¢\
w35 (%) ©)
T EAY
“8= " 2Eb h) @)
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Figure 3. Comparison of the BMC specimen deflection with the limit cases.
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The relative motion divided by the space between the beams is,

Uy —up
y N (8)

which yields the following apparent strain for the case of no adhesion,

n=a (%) ®

Obviously, case two shown in fig.2 for two adhesively bonded beams would have a maximum
deflection between that of the limiting cases onc and three given by equations (1) and (5), respec-
tively. A relative comparison of the three cases is shown in fig.3. Further, it is intuitively obvious
that case two would be a case of pure shear and the magnitude of the strains for this case would
be bounded by the strains given above for cases one (equation 4) and three (equation 9) which
represent the cases of perfect adhesion and zero adhesion, respectively.

E. Moussiaux [6] has developed a strength of materials type stress analysis to model the be-
havior of the bonded cantilever beam. Our purpose herein is to carry on the analysis of the BMC
specimen. The theoretical model and the first suggestions to determine the adhesive shear modulus
are reviewed, analyzed and optimized. Due to the complexity of the stress equation and the beam
deflection equation as well, a parametric analysis is generated and gives important conclusions
about the use of the theory to design a proper test specimen.

Next, numerical methods give more information about the stress state in the adhesive layer
and the conditions required for a pure shear state. Two finite-elements codes (VISTA, NOVA) are
used to verify the solution obtained by Moussiaux. It should be noted that Moussiaux’s simple
theory is for the case of plane stress while the Finite Element code VISTA is for the case of plane
strain. The former theory has thus been extended to obtain a complete comparison between the
simple beam theory and the finite element numerical results. In addition, three-dimensional effects
on the state of stresses are studied in the adhesive layer and at the interface between adherend and

adhesive using the Finite Element code ABAQUS.
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An experimental program is also outlined and presented to verify analytical solutions. Both

steel and aluminum adherends and neoprene rubber and epoxy resin adhesives are investigated.
Measurements of shear deformation in the adhesive layer and end deflection of the beam allow us

to compare the experimental results to analytical predictions.
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2 - LITERATURE REVIEW

# The use of adhesive bonding as a joining technique has become an attractive alternative due
to a number of disadvantages with conventional fastening techniques especially for non-metallic

materials. For example, traditional connectors such as bolts, rivets, welds and screws do not dis-

tribute loads uniformly. High stress concentrations occur and reduce the strength of the connection
at comparatively small loads. These become serious problems when the components are made of
polymeric or composite materials.

Compared to traditional fasteners, adhesive bonds provide a greater uniformity in load dis-

tribution and some other potential advantages:

¢ higher joint strength, damage tolerance and fatigue life,
¢ no reduced strength of composites due to fastener holes,
¢ lower part count,

e reduced weight,

®  casier processing,

®  cost saving for operation, maintenance and fuel,

® reduced corrosion problems.
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Despite these advantages, some factors have caused the adhesive joints to be considered sen- »

L\

f:: sitive and unpredictable, and hence, wider usage of adhesives has been limited. Some of these dis-

% advantages are given below: )

:|‘.

0 3 - .

. ¢ the complexity of stress and failure analyses of adhesives,

@
¢  the difficulty of analyzing the quality and reliability of adhesives,

::‘ e the lack of an acceptable standard design and testing methodology for mechanical character- \

<A

ization, ®

Y

L

;.: ¢ the disparity between bulk adhesive properties and adhesive properties in the bonded state that '

". B

::: often make the former unusable in predicting the response of a full scale structural elements.
£

)

o

' The basic features of the adhesive bond problems were examined in the classic analysis of

4

:: Goland and Reissner [7). In their work, the adherends were assumed to deform as thin plates when )

¢

()

::' bonded by an clastic adhesive layer. In additic . i, he rosulting shear stress, 7,,, a significant :

@

o normal or out-of-plane (peel) tens.e stress, o,,, Was shown to develop in the bondline. As the ad- :

’- hesive layer was assumed te be very thin, the resulting stress distribution from this model was as-

e
= sumed to not vary through the thickness of the adhesive. Actually, the maximum stress in the

’; bondline almost always occurs at the interface and differs drastically from the average through the ¢
o .

.': thickness. :

V.

s Some studies [8-13] have demonstrated the influence of several factors such as specimen ge-

p ?: .

ometry, material stiffness, experimental processing, etc. on the distribution of stress. Their com- ™

B J

N bined effect is a non-uniform and non-pure shear state  the adhesive layer with stress A

[\

e concentrations at the bimaterial tips. These variations in stress magnitude and distribution make 1
L) :
3| difficult the measurement of deformation properties inside the bond. They have led to the existence ° '

;' of a wide variety of specimen geometries and loading procedures for in-situ adhesive testing. Their

' main purpose is to minimize the stress concentration at bond termination and to allow an accurate

R determination of shear properties at the same time. The ideal test would contain a constant and ¢

®

" pure shear stress state throughout the adhesive.

? :

!
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The lap shear test and its variants have been and are still the most commonly used shear tests
because of their simple geometry and because they give insight to bonded shear properties using
only tensile loads. For example, the thick adherend specimen, bascd on the the assumptions of rigid
adherends and no rotation, is assumed to be a case of constant and pure shear for the adhesive.
However, in practice, equilibrium and the fact that the adherends are elastic with rotations due to
moments gives rise 10 very high peel stresses and non-uniform shear stresses. Some authors [8-10]
have used the Finite Element technique to perform a stress analysis inside the joint which does
correctly identify the large shear and peel stresses at the bond termination of lap joints. This is il-
lustrated in fig.5 and 6 in the case of the modified single lap shear specimen analyzed in reference
[9). The high peel stresses near the bond termination tends to dominate the fracture behavior of
the joint. On the other hand, it is difficult to experimentally verify the high stresses and, as a result,
often the failure stress is calculated as the load divided by the bonding area even though a non-
uniform state of stress occurs in the joint. Obviously, the lap shear test is deficient in producing
data design for mechanical structures.

An alternate to lap shear testing is provided by the napkin ring torsion test specimen. Even in
this specimen, though, stress concentrations exist at edges. However, for adherends with rounded
comers loaded in tension, stress concentrations are reduced as shown by Liechti {15].

In the three point bending test [11], the adhesive is again supposed to be in a pure shear state.
Finite Element analysis, however, shows the presence of large cleavage stresses at the bond termi-
nation even though the shear stress does appear to be more uniformly distributed in the adhesive.
But once more the average stress is very different from the actual stress acting at the extremities .

In a torsion test such as the one shown in fig.7, the adhesive is subjected to a more homoge-
neous stress distribution, since the stress conceptrations at the bond ends are less significant.
However, a uniform stress is obtained only for small rotations.

The losipescu shear test [12] utilizes a notched specimen in bending as a shear test for com-
posite materials (fig.8). This test induces a state of uniform shear stress at the midsection of the

specimen by creating two counteracting moments which are produced by the applied load. The use
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Figure 6. Bondline tensile stresses in lap shear specimen ( from reference 9 ).
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of this test is still limited, because of the need for precision notches in order to achieve a uniform .
shear state. The test fixture requires strict dimensional tolerance but according to its inventors, the N,
M
optimization of this test could lead to a definitive form of experimental shear test for adhesive joints. ,'
|
Another promising new test for adhesive joints is the ARCAN specimen [13-15], the geometry :;:
of which is shown in fig.9-a and 9-b. It uses round stiff adherends which are notched and bonded .
i
in such a way as to produce a pure shear state. Loading can be applied to obtain any combination "
A4
of tension or shear. .
The so-called BMC test or the bonded cantilever beams test is the most recently developed ,f ’
adhesive shear test. Using the geometry of two cantilever beams bonded together with an adhesive N
.M‘
layer, and applying equally acting loads on both adherends, H.F. Brinson [2-5] assumed that the e
X
specimen should develop a uniform and constant shear state in the adhesive layer. H.F.Brinson and '
)
E. Moussiaux [6] used a strength of materials type solution developed by H. Beck {16] in 1962 to
model the stress state inside the bonded joint of the BMC specimen. As this new shear test is the N "
L
topic of this report, the main results from the analytical solution are reviewed next. N
An expression of the shear stress was found and was shown to be a function of the x- ',,_,
coordinate only and of a parameter @. ::
3
3P(1 + 2tk o
Ty = ( A —~(1 —cosh@-+tanh T sinh 3 -5) (10) A
bA(1 + 3(1 + 2t/h)%) ¢ ¢ g
\]
or, 4
\J
i* y
T =7 (1 —cosha = + tanh @ sinh & =) (10a) L
xy ¢ ¢ e
where, : |
oy
\
3G 1+ 20h)?
E=\/ e (L) 4 ”(1+ 1 2) a ]
E \ A th 3(1 + 2t/
:
o
The shear stress is uniform through the thickness of the bondline at any constant distance ".
from the end, but varies from zero at the fixed end to a maximum value at the free end : ' '\
A

o
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. LmAx _ 3P(1 + 2t/h) [1 _ 1 ] (12)

P bh(14 3 + 2R cosh @

'ty The larger the parameter @, the faster the shear stress reaches its maximum, and so, the more

I constant is the stress along the beam length (fig.10). Hence, for an experimental use, a measure-

X ment of the shear strain in the zone where the stress is constant, can easily yield the adhesive shear

[ modulus by using,

) T =G (13)

R which assumes a lincar elastic behavior of the adhesive.

Along the length, the beam mid-plane deflects as follows : *

% W) = —8P— ex* x>, 3P 6P
X Ebh3 2 6 4bhG Ebh3y2

3 [—’32‘-2——-"61+ (%)’sinhf‘(i-(%)’x—(%)’mhacosh-@f—+ (%)’mha] (14)

with,

2 1
A Y=l —Ll (15)
z 3(1 + 21/R)?

The end deflection, obtained at x=¢is :

I (o LN 3E (A, 2L 1 -
6'zzb(h+,)3“+""’[“<‘ ,2)+2G(z)+ 2(4 J*anha)} (16)

5=p—PC 18
g 2EB(h + 1) (%) ’
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where B is the dimensionless end deflection which can be used to determine the adhesive shear

modulus :

B=(+ l/h)3[4<l -—17) +3E
y

From the variation of § versus the stiffness ratio (fig.11), the ratio E/G, of a bonded beam can
be evaluated only if the end deflection measured lies in the fast increasing middle zone of the curve
(fig.12). In this particular region, # exhibits maximum sensitivity to the specimen deformability and
the best accuracy for G, is obtained in this manner.

In fig.13 and 14, the solutions for shear strain and end deflection derived from BMC theory
are compared with the limiting cases of perfect and zero adhesion discussed in chapter 1. For that
purpose, we used aluminum adherends ( E= 10" Psi, v=0.3 ) of 3 in. long, 0.125 in. thick and 1
in. wide. Bondline thickness was 0.005 in.. As shown on the figure, we used three types of adhesives
: G,= 1,000 Psi - 10,000 Psi - 100,000 Psi. In fig.14, one can see that for stiff bonded adhesives,
end deflections are very close to each other for these three cases and therefore its measurement must
Le very precise in order to accurately determine G,. Table 1 also gives a summary of the numerical
results. In the following section, the BMC method is analyzed with a view of understanding and
controlling every parameter that may influence the experimental application and the collection of
data.

Since Moussiaux’s effort, a new finite-clement code called NOVA is now available for the
stress analysis of in-situ adhesives [10]. The program NOVA can be used for plane stress as well
as plane strain analyses while an older code, VISTA, gives only data for plane strain and has been
extensively used for the stress analysis through the adhesive thickness. Finally, some experimental

results for adhesive shear moduli are presented which have been found using the BMC theory.
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